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Dispersion of Very Short Microwave Pulses in Waveguide

M. ITO, MEMBER, IEEE

Abstract—A very short carrier pulse propagating in waveguide is
subject to dispersion which causes distortion of both the envelope
and the carrier wave of the pulse. The results of a stationary phase
analysis of the problem are presented and results of experimental
work at X band are described.

The spectral separation property of the dispersive line which en-
ables it to operate as an elementary spectrum analyzer are discussed
and experimental evidence demonstrating this property is presented.

I. INTRODUCTION

ISPERSION in waveguide is of considerable
D practical importance in the transmission of both

FM and AM signals; in some systems it may be
the predominant source of distortion. This paper is con-
cerned with the dispersion of AM signals having the
form of very short pulses in conventional hollow wave-
guide.

The most familiar effect associated with dispersion of
short carrier pulses in waveguide is stretching or spread-
ing of the pulse envelope. Lesser known is the phenome-
non of angle modulation of the carrier wave within the
output pulse, which occurs in order to preserve the
spectral bandwidth of the input pulse. These phenomena
are not always undesirable; pulse compression radar
systems, for example, take advantage of these phe-
nomena to reduce peak pulse power.

Exact theoretical analysis of the propagation of
pulses in waveguide has not been very productive be-
cause of the difficulty in evaluating the contour integral
[1], [2] which describes the signal at some distance
along the waveguide axis from the source point. This
integral has been evaluated exactly in terms of known
functions only for an impulse excitation [1], [3]. The
convolution integral which describes the response for
other excitations is about as difficult to evaluate as the
contour integral. Cohn [2] has resorted to numerical
integration to calculate the response due to a step-modu-
lated carrier wave. Approximate analyses exist for a
number of elementary excitations including 1) a step
function [4], 2) a step-modulated carrier wave [1],
[5]-[9], 3) a rectangular envelope carrier pulse [10],
[11], [12], and 4) a Gaussian envelope carrier pulse
[13]. The latter two cases are of interest here but the
analyses referred to above, which employ a quadratic
approximation to the phase characteristic about a fixed
frequency, can only be applied to narrow-band signals.

Past experimental investigations [14]-[20] of the
propagation of carrier pulses in waveguide have not
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demonstrated the severe distortions that dispersion can
cause, largely due to the relatively large ratios of pulse
length (in free space) to the length of waveguide that
were employed. These investigations include experi-
ments with sound pulses [18], [19], [20] transmitted
over acoustic waveguide since the propagation function
for certain types of acoustic waveguide is similar to that
of electromagnetic waveguides. Recent developments in
techniques of generating and measuring very short
microwave pulses have made it possible to conduct fur-
ther investigations of the distortions due to dispersion.
The results of some work with fractional-nanosecond
X-band pulses are described here. The observed results
can largely be explained by means of a simple approxi-
mate analysis.

II. NATURE oF THE OuTtpUuT PULSE

An homogeneous hollow waveguide of constant cross
section which has perfectly conducting walls and which
is excited in only one of its modes has a propagation
function of the form

Blw) = — oT/1 —~ (w,/w)? (1)

1

where
we = 2nfe  (fo = modal cutoff frequercy)
T = {ree space propagation time.

The function B{w) gives the total phase shift (in radians)
of a steady-state signal of radian frequency « propagat-
ing through the waveguide.

If the waveguide is excited in a single mode by an
input signal x(¢) with Fourier transform X (w), the out-
put response from the waveguide can be described by
the Fourier integral

1 0
y() = — f X (w)eilotH @) o, (2)
2 J _,

Under certain conditions to be briefly discussed later, a
simple asymptotic evaluation of (2) can be obtained by
applying Kelvin's principle of stationary phase.!

For the integrand of (2), the points of stationary
phase are the solutions of the equation

t= — —— = — §'(w). (3)
The function §'(w) is usually called the group-delay
function. According to the stationary phase principle,

the response at a time {=7 can be interpreted as being

1 See, for example, Papoulis [22].
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built up largely from a band of spectral components
that have a group delay nearly equal to 7. The solution
of (3) for positive w is given by

LN 4
V(E/T)E—1

Except for sign, the solution for negative w is identical
to the above. Figure 1 shows a plot of the function

w /T

we NGT)P—1

This curve describes the group-delay characteristic of
the waveguide and gives the location of the points of
stationary phase as a function of time.

The stationary phase approximation to () is
given by

T2
50~ o/ Tt X

cos I:wst + B + fﬂ
i>T (5)

which, for a given X(w), best applies for large ¢ and 7.
This approximation assumes any nonlinear variations of
the phase of X(w) to be small compared to the nonlinear
variation of 8(w). Otherwise, it is necessary to include a
small additional term in the argument of the cosine func-
tion in (5).

The conditions under which stationary phase anal-
ysis can be applied are difficult to specify quantita-
tively since the analysis yields no estimate of the error
in the end result. Qualitatively, however, the require-
ments in the present case are 1) that the dispersion be
large, that is, d8/dw?=f""(w) be large for all w, values of
interest, and 2) that the input spectrum be wide band
because the analysis does not take into account the vari-
ation of X(w) in the region about the point of sta-
tionary phase.

The error in y1(t) due to small dispersion is greatest
for values of ¢ close to T or equivalently for w, values
much greater than w,. Examination of the response due
to an impulse excitation, which is free of errors due to
variations in X(w), enables one to estimate a lower
bound on the values of ¢ for which y:(¢) is a good ap-
proximation to y(#). For an impulse excitation the error
in the envelope of y:1(¢) is less than 1 per cent for values
of ¢ greater than the value £, given by

te = TV1+ (15/w.T)% (6)

That is, the analysis begins to fail for stationary phase
points above the point w,, given by

wy = wer/ 1+ (w.T/15)2% (7N
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Fig. 1. Universal curve giving: 1) the location of the stationary

phase point as a function of time, 2) group-delay characteristics
of the waveguide, and 3) instantaneous carrier frequency within
the dispersed pulse.

By applying the convolution theorem, it may be argued
that ¢, is a lower bound on ¢ for other excitations. It fol-
lows that w, is an upper bound on w,. For the experi-
ments to be described later, w, is very much larger than
the highest w, values of interest because of the largeness
of the product w,7" and the location of the signal spec-
trum. Consequently, the error in ¥:(¢) due to small dis-
persion is considered to be small.

The error in vy.{f) due to moderate variation of X ()
in the region of the stationary phase point can be inves-
tigated by employing the more general saddle-point
method of integration [1], [21], [23]. This method of
integration shows that v:(¢) is the first-order term of a
series involving X (w) and the derivatives of X (w), all
evaluated at w=w,. Haggarty [23] shows that the per-
centage error e that results from neglecting the higher
order terms in the series is less than or equal to an upper
bound e, given by

50X (w)

—_— . 8
B (@)X (w) ®

€ =

W=

The bound ¢ tends to be less for a wide-band signal than
a narrow-band signal of similar shape because the factor
| X"’ (w,)/X (w,)| is generally smaller for the wide-band
case. However, even for relatively narrow-band signals,
the error bound will be small if the values of [5”(%)‘
over the signal bandwidth are very large. For the experi-
ments described in this paper, the bandwidths of the
input signals and the strength of the dispersion are such
as to make this source of error small.

The simple expression for the output response that
results from stationary phase analysis has several in-
teresting properties. To facilitate the discussion, y(¢) is
separated into two factors: 1) an envelope function pro-
portional to |X(ws) 1 /\/}ﬂ”(ws)\ , and 2) a gliding tone
described by cos [wst+B(w,) +/4].
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First, consider the nature of the gliding tone or swept-
frequency carrier wave. If the “instantaneous carrier
frequency” f, within the dispersed pulse is defined to be
fo=(1/27)(d[wt+B(w,)]/dt), it may easily be shown
that the time variation of f, is given by the relationship
Fol) /fe=w,(f) /w.. That is, the instantaneous carrier {re-
quency at a time {=r7 is equal to the frequency for which
the group delay through the waveguide is equal to 7.
The rate of frequency sweep df,/dt is not a linear func-
tion of time, and it is evident that the nature of the fre-
quency sweep is essentially a property of the waveguide
rather than of the input signal. The input signal affects
only the shape of the output envelope and its time posi-
tion relative to the gliding tone. For example, if the in-
put signal is a carrier pulse with carrier frequency fo,
there is a definite relationship between the time position
of the output envelope and the time that the instanta-
neous carrier frequency passes through the value f,. For
the purpose of demodulation, the output carrier wave
can be said to be swept in {requency about f=f,.

Next, consider the envelope of the output pulse
which we have seen is proportional to ]X (ws) |/
\/IB”(ws) ' . For a carrier pulse input excitation, X (w)
as a function of & is symmetrical about the input carrier
frequency. However, because of the nonlinear relation-
ship between w, and ¢ and because of the attenuation

factor I/V!B”(ws) , the output envelope as a function
of time is not symmetrical about any instant of time.
Qualitatively, the envelope may be described as having
a sharp attack and slow decay. Nevertheless, the output
envelope is closely related to the shape of input spec-
trum. Anderson and Barnes (18], for example, have
recognized the spectral separation properties of a dis-
persive acoustic waveguide in attempting to calculate
the spectrum of an acoustic pulse, but the intuitive ar-
gument employed does not take into account the dis-

persive attenuation factor 1/\/l B (ws) | . Tverskoi [24],
among others, has also suggested using a dispersive line
for spectrum analysis.

The time dependence of the dispersive attenuation
factor accounts for changes in the degree of dispersion
across the frequency spectrum of the input signal. A
band of spectral components subject to strong disper-
sion becomes spread over a longer time interval than a
band of spectral components of the same bandwidth
and of the same energy content that is not as strongly
dispersed. It follows then that the peak amplitude of the
response in the low dispersion case must necessarily be
larger than in the high dispersion case. This is, of course,
a fundamental concept in “chirp” radar systems.

Figure 2 shows plots of \/T/wc/\/],B”(er)] vs. f/fe
and t/T. With the aid of Fig. 2 and Fig. 1, the output
pulse envelope can be cacullated from a knowledge of
the input pulse spectrum, and vice versa. An application
of the former process is illustrated diagrammatically in
Fig. 13.
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Fig. 2. Frequency and time dependence of the

dispersive attenuation factor.

I1I. EXPERIMENTAL RESULTS

The experimental work described here was carried out
at X band and consisted of two different experiments.
In the first experiment synchronous detection was em-
ployed in order to obtain resolution of the angle modu-
lation structure within the dispersed pulse; while in the
second experiment, in which much shorter pulses were
used, nonsynchronous detection was employed as a
means of demonstrating the spectral separation proper-
ties of the dispersive transmission line. In order to keep
losses low, but more important, in order to keep differ-
ential attenuation across the frequency band of interest
small, a comparatively short length of RG/52 wave-
guide (about 100 cutoff wavelengths long) was used in
both experiments. This waveguide was excited in the
dominant TEy mode, which has a cutoff frequency of
6.56 Ge/s. In both cases, heterodyne detection was em-
ployed because the dispersed pulses could not be
directly observed.

A. The First Experiment

A block diagram of the first experimental setup is
shown in Fig. 3. The diode modulator, which incorpo-
rates a crystal diode mounted across the waveguide,
produces short carrier pulses of about 0.9 ns half-ampli-
tude width and variable carrier frequency. These pulses
have an envelope that is approximately Gaussian in
shape.

The dispersed pulses at the output of the test wave-
guide section are observed with a receiver comprised of
a wide-band multiplier (an untuned crystal mixer), a
low-pass filter, and a sampling oscilloscope. Correspond-
ing to a dispersed pulse represented by

a(t) cos [2xfot + ¢() + ¢o] 9)

where a(t) is the envelope, ¢(f) is an angle modulation
function, and ¢, is a phase constant, the output of the
receiver is proportional to

a(t) cos [¢(t) + (b0 — b10)] (10)



360

where ¢ro is the LO phase. Because of the synchronous
detection scheme, the angle modulation function ¢(f)
and the phase difference (¢o—¢pro) remain the same
- from pulse to pulse. Consequently, with the recurrent
display scheme employed, a stationary waveform is ob-
served. From this waveform the envelope function a(?)
can be determined and the angle modulation structure
¢(t) or the FM structure (1/2w) (d¢/dt) can be ex-
amined. A phase shifter in the LO signal path allows
adjustment of the phase difference (dpo—oro) to any
desired value.

Figure 4 shows oscillogramsof detected pulseswith and
without the test waveguide section in the system. Un-
symmetrical output envelopes having a sharp attack
and slow decay are observed to result from more or less
symmetrical input envelopes. As expected, the amount
of envelope stretching is seen to increase as the carrier
frequency of the input pulses approaches the waveguide
cutoff frequency.

The envelope of the pulses generated by the modula-
tor were found to be well approximated by a Gaussian
function matched at the half-amplitude points (Fig. 5),
and this function was employed in calculating the enve-
lope of the dispersed pulses emerging from the wave-
guide. Calculated output waveforms, determined from
the stationary phase formula, are shown in Fig. 6 for in-
put carrier frequencies equal to 7.60 Ge/s and 7.86 Ge/s.
Experimentally measured output envelope points cor-
responding to the peaks of the beat structure are also
shown in Fig. 6. The experimental points agree reason-
ably well with the calculated envelopes except in the
vicinity of /7T =2.25 where the measured points dip sig-
nificantly below the calculated envelopes. Since the
discrepancy occurs in the vicinity of the same value of
t/T in both cases, it is attributed to a dip in the steady-
state system response in the vicinity of 7.30 Ge/s, which
is the frequency for which the normalized group delay
is about 2.25. Such a dip has been experimentally con-
firmed.

Measurement of the angle modulation function ¢(¢)
was carried out as follows. By adjusting the phase
shifter in the LO signal path, a notch was produced in
the wide central lobe that appears in the detected out-
put pulses shown in Fig. 4. Because points on the angle
modulation curve are most easily determined from a
measurement of zero crossings, the bottom of this notch
was brought down to the axis of zero crossings for this
purpose. Figure 7 shows the resultant oscillogram for the
case fo=7.60 Gc/s. This means that the argument of
the cosine function in expression (10), namely,

¢(0) + (90 — ¢10) = W() (11)
has the principal value + (7/2) at the time correspond-
ing to the notch. Consequently, measurement of the
times of zero crossings relative to this notch gives the
times when W(t) differs from =+ (x/2) by an integral
multiple of .
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Fig. 5. Measured input pulse envelope for a carrier frequency of
7.60 Ge/s and a Gaussian approximation to this envelope.

Figure 8 shows measured values of the angle modula-
tion function W(#) for the cases f,=7.60 Gc/s and
fo=7.86 Gc/s. Also shown are the theoretical angle
modulation functions calculated from the stationary
phase formula

Wi(t) = TV = 1 — 2nfut — 1 (12)
where ¢, is a constant chosen to bring the calculated
curve into vertical coincidence with the measured curve
at the notch point. The agreement between theoretical
and experimental curves is remarkably good. It is evi-
dent that the slope of the angle modulation curve, which
is proportional to the FM characteristic, is not a linear
function of time.
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B. The Second Experiment

A block diagram of the second experimental setup is
shown in Fig. 9. The input carrier pulses to the wave-
guide are generated by exciting the waveguide with
band-limited impulses produced by a microwave “noise”
generator of the impulse type [25]. The output ampli-
tude spectrum of this “noise” generator is uniform
within a half dB from 10 Mc/s well up into X band.
The waveguide acts as a high-pass filter, thereby creat-
ing a band-pass spectrum with a 6 dB-bandwidth of
about 5.0 Ge¢/s. The nominal carrier frequency of the
pulses generated is about 9.0 Ge¢/s, and the half-ampli-
tude width of these pulses is estimated to be about
0.2 ns. Measurement of this pulse width was not feasible
because of bandwidth limitations of the detector output
circuit and the oscilloscope.

The receiver in this experiment is similar to the one
previously used except that the LO frequency is gen-
erally not coincident with the carrier frequency of the
input pulses; nor is the LO phase locked to that of the
input pulses. The receiver functions basically as a fixed
bandwidth, band-pass filter whose center frequency is
equal to the LO frequency. The receiver bandwidth is
governed by the low-pass filter on the output of the mul-
tiplier.

Figure 10 shows oscillograms of observed receiver out-
puts for a number of LO frequencies and with a low-
pass filter bandwidth (6 dB) of 1.1 Gc¢/s. The time base
is triggered by the envelope of the input pulses to the
waveguide. The somewhat unusual display results from
sampling of an oscillatory waveform whose phase
changes more or less randomly from pulse to pulse,
relative to an invariant envelope. Since the phase can
be presumed to go through all possible values, the enve-
lope of the dot pattern is the envelope of the oscillatory
waveform.

Figure 11 shows similar oscillograms taken with a low-
pass filter bandwidth of 0.20 Gc¢/s. For these oscillo-
grams the mixer was intentionally operated with a low
LO level so that a significant part of the output is due
to direct detection of the pulse envelope. The resultant
oscillograms clearly demonstrate movement of the dot
pattern along the detected envelope.

The previously mentioned oscillograms can be inter-
preted from either of two asymptotically equivalent
viewpoints: 1) in terms of a gliding tone, and 2) in terms
of group delay of spectral components; both of these
viewpoints are discussed in Section III-B, 1) and Sec-
tion IT1-B, 2).

1) Gliding Tone Interpretation: According to the sta-
tionary phase analysis, the output signal from the wave-
guide will have the form of a swept-frequency carrier
wave of finite duration. On this basis it can be shown
that the overall behavior of the system is much like that
of a conventional panoramic spectrum analyzer acting
on a CW signal. The roles of the local oscillator and the
input signal are interchanged but the interpretation of
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the end results is similar. The use of a zero intermediate
frequency (IF) eliminates the usual “image” problem.
As with the panoramic analyzer, the displayed (IF)
pulse width is governed by the sweep rate of the hetero-
dyned signal across the IF pass band and by the IF
bandwidth. When the gliding tone sweeps through the
receiver pass band in a time comparable to or shorter
than the width of the receiver impulse response, the re-
ceiver output begins to resemble the impulse response.
However, when the frequency scan is slow, the ratio of
output amplitude to input amplitude traces out the
receiver pass band. Conversely, the width of the re-
ceiver time response gives an indication of the sweep
rate. In Fig. 10, for example, it is observed that the dot
pattern decreases in width as the LO frequency is in-
creased. This indicates that the sweep rate is increasing
as the instantaneous carrier frequency increases, which
is in agreement with the stationary phase prediction. In
Tig. 11, it is observed that the IF pulse more or less
reaches its limiting width within the range of LO fre-
quencies shown.

For a fixed LO frequency but variable IF bandwidth
on the other hand, the IF pulse width tends to decrease
with decreasing IF bandwidth up to a certain point and
then begins to increase. For example, consider two spe-
cific LO frequencies, fro=11.09 Gc/s, and frLo=7.64
Gce/s, in Figs. 10 and 11. For the case f10=11.09 Ge/s it
is observed that decreasing the IF bandwidth causes
the IF pulse width to increase whereas, for the case
fro="1.64 Gc/s, decreasing the IF bandwidth causes the
IF pulse width to decrease.

The time at which the gliding tone sweeps through
the LO frequency can be estimated from the time posi-
tion of the peak receiver output. For a rapidly sweeping
carrier wave, the peak receiver output occurs at approxi-
mately a constant time delay after the instantaneous
carrier frequency sweeps through the LO frequency. For
a slow sweep, however, the amplitude variation of the
gliding tone must be taken into account. In the present
case, the amplitude of the tone decreases with decreas-
ing instantaneous carrier frequency for most of the fre-
quency sweep because of the effect of the dispersive
attenuation factor. This causes the peak receiver output
to occur somewhat earlier than expected. Compare Figs.
10 and 11, for example. Taking the location of the peak
for fro=11.09 Ge/s as time reference, one observes that
for a LO frequency of say fro=7.64 Gc/s, the pulse peak
occurs earlier in Fig. 10, where a wide bandwidth low-
pass filter was used, than in Fig. 11, where a narrower
bandwidth low-pass filter was employed.

Figure 12 shows a plot of LO frequency vs. time posi-
tion of the peak receiver output, measured relative to
the position of the pulse peak for an LO frequency equal
to 10.64 Gc/s. These measurements were made from os-
cillograms similar to those of Fig. 11 but in which the di-
rect detection component was suppressed. Precise time
delay between the input pulse to the waveguide and the
output pulse from the receiver was not measured; and
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Fig. 11. Oscillograms similar to those of Fig. 10 but with a low-pass
filter bandwidth of 0.20 Gc/s. A significant part of the receiver
output is due to direct detection of the envelope of the dispersed
pulse.

in order to make a comparison with the theoretical
curve, the horizontal position of the measured points on
the graph was fixed by placing the point corresponding
to an LO {requency of 10.64 Gc/s on the theoretical
curve, With this horizontal placement of the measured
points, it is seen that they fit the theoretical curve
fairly well down to about f=7.4 Gc/s, after which the
measured points begin to appear somewhat earlier than
the theoretical prediction. Some of this discrepancy
may be attributed to uncertainty in locating the pulse
peak; but it is largely attributed to a slow {requency
sweep rate, the effect of which has been previously dis-
cussed. A slow sweep rate is indicated by the increasing
width of the receiver output which is quite noticeable
for LO {requencies below about 7.6 Gc/s.

2) The Spectral Separation Viewpoint: Stationary
phase theory indicates that a spectral component of the
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input signal at a given frequency contributes most to the
output signal from the transmission system in the
vicinity of a time equal to the group-delay time of that
component through the system. For waveguide, the
frequency vs. group-delay characteristic is a mono-
tonically decreasing function of increasing group delay.
Consequently, the theory suggests that contiguous
bands of spectral components of the output signal will be
separated in time in an orderly way. This in turn sug-
gests that a frequency selective (band-pass) filter can
be used to separate the parts of the response due to dif-
ferent frequency bands of the input signal. This spectral
separation process is indicated diagrammatically in
Fig. 13.

If the spread of group delays for the spectral compo-
nents falling within the filter bandwidth is large com-
pared to the filter impulse response width, then the sta-
tionary phase analysis can be reapplied. That is, the
filter output is essentially described by (5) modified by
the multiplicative factor |H(ws)’, where H(w) is the
filter transfer function. This means that the time spread
of the filter output response is essentially the spread of
group-delay times of the spectral components falling
within the filter bandwidth. This, in turn, accounts for
the increasing width of the time responses that occurs
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in Fig. 10 as the center frequency of the analyzing filter
(i.e., the LO frequency) is lowered toward the cutoff {re-
quency.

As the spread of group-delay times becomes shorter
than that previously described, the filter begins to treat
the input excitation as an impulse. This explains the
more or less constant response widths observed in
Fig. 11.

It is evident from the previous discussion that the
time position of the peak filter output gives a measure
of the average group delay of the spectral components
falling within the filter pass band. In fact, for a first-
order estimate, one can equate the time position of the
peak, corrected for a fixed time delay due to the analyz-
ing filter, with the group delay of the spectral compo-
nent at the center frequency of the filter. A better esti-
mate is obtained if one takes into account the effect of
the dispersive attenuation factor in displacing the peak
response forward in time from the group-delay time of
the central spectral component, or if one employs a fl-
ter with a bandwidth narrow enough to overshadow the
effect of the dispersive attenuation factor. This latter
principle was employed in plotting Fig. 12, which can be
considered to be a calibration of the group-delay charac-
teristic of the waveguide.

From either of the foregoing viewpoints, it is seen
that the dispersive properties of the waveguide enable
it to function as a crude form of spectrum analyzer. In
the present work we have experimentally calibrated the
nonlinear frequency vs. time scale and have studied the
effect of different post-detector bandwidths on the
operation of the system.

IV. CONCLUSIONS

The main conclusions to be drawn from the analysis
and experimental work described in this paper are:

1) Strong dispersion in waveguide causes both the
envelope and carrier wave of a short carrier pulse
to become severely distorted.

o
~

The carrier wave becomes distorted into a gliding
tone which sweeps through the input carrier fre-
quency. The frequency sweep of this tone, which
is nonlinear with time, is essentially independent
of the input pulse shape.

3) The envelope of the output pulse is asymmetrical,
but is closely related to the spectrum of the input
signal.

4) The degree of the foregoing distortions increases
with a) decreasing width of the input pulses,
b) decreasing carrier frequency, and c¢) increasing
length of waveguide.

5) The waveguide, combined with an appropriate
receiver, can be made to operate as a spectrum
analyzer.
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The Solution of Guided Waves in Inhomogeneous
Anisotropic Media by Perturbation and
Variational Methods

G. J. GABRIEL, STUDENT MEMBER, IEEE, AND M. E. BRODWIN, MEMBER, IEEE

Abstract—The Schroedinger perturbation theory is extended to
the boundary value problems of guided electromagnetic waves in
cylindrical structures containing inhomogeneous, anisotropic, dis-
sipative media. A general variational principle, which reduces to
existing restricted forms valid for nondissipative media, is also
formulated. These approximation methods evolve in a unified man-
ner from the eigenvalue formulation of Maxwell’s equations wherein
the wave numbers are the eigenvalues of a linear operator. The
properties of the media are restricted only by the requirement that
they be independent of the axial coordinate. Perturbation of the
backward wave is considered and the condition for nonreciprocal
waveguides is stated. Modification of the perturbation method for
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application to gyrotropic media is outlined and it is indicated that
convergence of the perturbation terms is improved in those media,
such as the plasma and semiconductor, which permit a Taylor ex-
pansion of the susceptibility tensor in powers of the external field.
Two specific examples, whose exact solutions are known, are in-
cluded to illustrate the application.

I. INnTRODUCTION
THE PROPAGATION of guided electromagnetic

waves in cylindrical structures containing aniso-

tropic, inhomogeneous media poses formidable
boundary value problems, even under simplifying con-
ditions. In recent years, materials which display induced
anisotropy, namely the gyrotropic media, have received
considerable attention. Because of the special form of
the susceptibility tensors of gyrotropic media, when the
external magnetic field is oriented along one of the co-



